Problem 1.37

Consider the equation $y^{\prime \prime}+2 y^{\prime} / x+y^{n}=0[y(\infty)=0]$ for $n \neq 0,1$. Using the methods of Sec. 1.7 show that the equation is soluble in terms of elementary functions when $n=5$ and solve it.

Solution

If $n=5$, then the ODE we have to solve is

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}+y^{5}=0 \tag{1}
\end{equation*}
$$

Make the following scale transformations.

$$
\begin{aligned}
& x \rightarrow a x \\
& y \rightarrow a^{p} y
\end{aligned}
$$

If there is a value of p that leaves the ODE unchanged, then it is said to be scale invariant, and progress can be made in solving it.

$$
\frac{d^{2}\left(a^{p} y\right)}{d(a x)^{2}}+\frac{2}{(a x)} \frac{d\left(a^{p} y\right)}{d(a x)}+\left(a^{p} y\right)^{5}=0
$$

Pull the constants out of the derivative and separate the a terms from x and y.

$$
\frac{a^{p}}{a^{2}} \frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{a^{p}}{a^{2}} \frac{d y}{d x}+a^{5 p} y^{5}=0
$$

Combine the a terms.

$$
a^{p-2} \frac{d^{2} y}{d x^{2}}+a^{p-2} \frac{2}{x} \frac{d y}{d x}+a^{5 p} y^{5}=0
$$

Notice that if $p-2=5 p$ or $p=-1 / 2$, then the a terms cancel out and we're back to equation (1). Thus, the ODE is scale invariant under the transformation, $x \rightarrow a x, y \rightarrow a^{-1 / 2} y$. This means we can make the substitution,

$$
y(x)=x^{-1 / 2} u(x),
$$

to make the ODE equidimensional. Take the derivative to find out what y^{\prime} is in terms of u.

$$
\frac{d y}{d x}=-\frac{1}{2} x^{-3 / 2} u+x^{-1 / 2} \frac{d u}{d x}
$$

Take another derivative to find out what $y^{\prime \prime}$ is in terms of u.

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{3}{4} x^{-5 / 2} u-\frac{1}{2} x^{-3 / 2} \frac{d u}{d x}-\frac{1}{2} x^{-3 / 2} \frac{d u}{d x}+x^{-1 / 2} \frac{d^{2} u}{d x^{2}} \\
& =\frac{3}{4} x^{-5 / 2} u-x^{-3 / 2} \frac{d u}{d x}+x^{-1 / 2} \frac{d^{2} u}{d x^{2}}
\end{aligned}
$$

Make these substitutions in equation (1).

$$
\frac{3}{4} x^{-5 / 2} u-x^{-3 / 2} \frac{d u}{d x}+x^{-1 / 2} \frac{d^{2} u}{d x^{2}}+\frac{2}{x}\left(-\frac{1}{2} x^{-3 / 2} u+x^{-1 / 2} \frac{d u}{d x}\right)+\left(x^{-1 / 2} u\right)^{5}=0
$$

Distribute $2 / x$.

$$
\frac{3}{4} x^{-5 / 2} u-x^{-3 / 2} \frac{d u}{d x}+x^{-1 / 2} \frac{d^{2} u}{d x^{2}}-x^{-5 / 2} u+2 x^{-3 / 2} \frac{d u}{d x}+x^{-5 / 2} u^{5}=0
$$

Combine like-terms.

$$
x^{-1 / 2} \frac{d^{2} u}{d x^{2}}+x^{-3 / 2} \frac{d u}{d x}-\frac{1}{4} x^{-5 / 2} u+x^{-5 / 2} u^{5}=0
$$

Multiply both sides by $x^{5 / 2}$.

$$
x^{2} \frac{d^{2} u}{d x^{2}}+x \frac{d u}{d x}-\frac{1}{4} u+u^{5}=0
$$

We now have an equidimensional ODE. We can make the exponential substitution, $x=e^{t}$, to eliminate the independent variable and hence make the ODE autonomous. Doing so means we'll have to write expressions for $u^{\prime}(x)$ and $u^{\prime \prime}(x)$ in terms of t using the chain rule.

$$
\begin{aligned}
x & =e^{t} \quad \rightarrow \quad \frac{d x}{d t}=e^{t} \\
\frac{d u}{d t} & =\frac{d u}{d x} \frac{d x}{d t}=x \frac{d u}{d x} \\
\frac{d^{2} u}{d t^{2}} & =\frac{d}{d t}\left(\frac{d u}{d t}\right)=\frac{d}{d t}\left(x \frac{d u}{d x}\right)=\frac{d x}{d t} \frac{d}{d x}\left(x \frac{d u}{d x}\right)=x\left(\frac{d u}{d x}+x \frac{d^{2} u}{d x^{2}}\right) \\
& =x \frac{d u}{d x}+x^{2} \frac{d^{2} u}{d x^{2}}=\frac{d u}{d t}+x^{2} \frac{d^{2} u}{d x^{2}} \quad \rightarrow \quad \frac{d^{2} u}{d t^{2}}-\frac{d u}{d t}=x^{2} \frac{d^{2} u}{d x^{2}}
\end{aligned}
$$

Plug these expressions into the ODE.

$$
\frac{d^{2} u}{d t^{2}}-\frac{d \not x}{d t}+\frac{d \not x}{d t}-\frac{1}{4} u+u^{5}=0
$$

We now have an autonomous equation.

$$
\frac{d^{2} u}{d t^{2}}-\frac{1}{4} u+u^{5}=0
$$

Reduce the order of the ODE by making the substitution,

$$
\begin{aligned}
\frac{d u}{d t} & =w(u) \\
\frac{d^{2} u}{d t^{2}} & =\frac{d w(u)}{d t}=\frac{d w}{d u} \frac{d u}{d t}=\frac{d w}{d u} w(u) .
\end{aligned}
$$

Plugging these expressions into the ODE yields the nonlinear first-order equation,

$$
\frac{d w}{d u} w-\frac{1}{4} u+u^{5}=0
$$

which can be solved by separation of variables. Bring the last two terms to the right side.

$$
w \frac{d w}{d u}=\frac{1}{4} u-u^{5}
$$

Separate variables.

$$
w d w=\left(\frac{1}{4} u-u^{5}\right) d u
$$

Integrate both sides.

$$
\frac{1}{2} w^{2}=\frac{1}{8} u^{2}-\frac{1}{6} u^{6}+A
$$

Multiply both sides by 2 .

$$
w^{2}=\frac{1}{4} u^{2}-\frac{1}{3} u^{6}+2 A
$$

Now that the integration is done, change back to $d u / d t$.

$$
\left(\frac{d u}{d t}\right)^{2}=\frac{1}{4} u^{2}-\frac{1}{3} u^{6}+2 A
$$

Unfortunately, I can't see how to solve this equation explicitly for u. An implicit solution can be obtained with separation of variables, though. Take the square root of both sides first.

$$
\frac{d u}{d t}=\sqrt{\frac{1}{4} u^{2}-\frac{1}{3} u^{6}+2 A}
$$

Then separate variables.

$$
\frac{d u}{\sqrt{\frac{1}{4} u^{2}-\frac{1}{3} u^{6}+2 A}}=d t
$$

Integrate both sides.

$$
\int^{u} \frac{d s}{\sqrt{\frac{1}{4} s^{2}-\frac{1}{3} s^{6}+2 A}}=t+B
$$

Now change back to the original variables, x and y.

$$
\int^{\sqrt{x} y} \frac{d s}{\sqrt{\frac{1}{4} s^{2}-\frac{1}{3} s^{6}+2 A}}=\ln x+B
$$

